Formalising Boost POSIX Regular Expression Matching

15th International Colloquium on Theoretical Aspects of Computing
18 October 2018, Stellenbosch, South Africa
What we’ve been doing

We’ve been thinking about

- regular expression matching semantics
 - Perl-Compatible Regular Expression (PCRE) engines
 - POSIX-compliant engines
- ambiguity — “more than one way to match”
- capture groups

Why Boost?

- “very powerful” C++ library
- mature (1999–)
- online peer-reviewed QA process
- regular expression engine that has a POSIX mode
Leftmost-greedy vs leftmost-longest matching

Match “aba” with $E_1 = (ab|ba|a)^*$

$\quad\quad$ ambiguous

$[ab][a] \quad [a][ba]$

Leftmost-greedy $[ab][a]$
Leftmost-longest $[ab][a]$

Match “aba” with $E_2 = (a|ab|ba)^*$

$\quad\quad$ ambiguous

$[ab][a] \quad [a][ba]$

Leftmost-greedy $[a][ba]$
Leftmost-longest $[ab][a]$

- E_2 defines the same language as E_1, but subexpression order differs
 - Compare $E_1 = (ab|ba|a)^*$ to $E_2 = (a|ab|ba)^*$
 - Leftmost-longest: matcher *seemingly* considers all possible matches for subexpressions [more on this later]
The POSIX regular expression specification

POSIX specifies leftmost-longest matching:

“The search for a matching sequence starts at the beginning of a string and stops when the first sequence matching the expression is found, where ‘first’ is defined to mean ‘begins earliest in the string’. If the pattern permits a variable number of matching characters and thus there is more than one such sequence starting at that point, the longest such sequence is matched. . . . Consistent with the whole match being the longest of the leftmost matches, each subpattern from left to right shall match the longest possible string.”

Fowler’s complaint: “Subpattern” only used here; elsewhere it’s “subexpression” (always in the context of grouping).

Note: We only consider full matching in this work.
An eccentric reading of the POSIX standard?

Match “aba” with \((ab|ba|a)^*\)

Regex-TDFA: \([ab][a]\)
Boost: \([a][ba]\)

Match “aba” with \((a|ab|ba)^*\)

Regex-TDFA: \([ab][a]\)
Boost: \([a][ba]\)

POSIX

- Full matching with submatch addressing
- Position and extent of substrings matched by subexpressions must be available

Boost POSIX Mode

- Maximises what is reported for marked subexpressions (those surrounded by parentheses)
- Essentially, reading POSIX with:
 \(s/subpattern/marked subexpression/\)

Regex-TDFA written in Haskell. Boost written in C++.
More examples

Match “aa”
with \((0(1a^*)_1(2a^*)_2)_0\)

<table>
<thead>
<tr>
<th>Captures</th>
<th>Boost</th>
<th>RTDFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>([0[1aa]_1[2]_2]_0)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>([0[1a]_1[2a]_2]_0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>([0[1]_1[2aa]_2]_0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Match “aa”
with \((0a^*(1a^*)_1)_0\)

<table>
<thead>
<tr>
<th>Captures</th>
<th>Boost</th>
<th>RTDFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>([0aa[1]_1]_0)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>([0a[1a]_1]_0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>([0[1aa]_1]_0)</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Note: All non-atomic subexpressions are parenthesised.

- **Regex-TDFA** maximises lengths of *all subexpressions* in the order they occur in the regular expression
- **Boost** maximises lengths of *(capture) groups* in the order they occur in the regular expression
Capturing regular expressions and forests

Capturing Regular Expressions
Over a finite alphabet Σ and an index set I:

- \emptyset empty language
- ϵ empty string
- a symbols $a \in \Sigma$
- $(r_0 \cdot r_1)$ concatenation of capturing regular expression r_0, r_1
- $(r_0 + r_1)$ alternation of capturing regular expressions r_0, r_1
- (r^*) closure of capturing regular expression r
- $(i r)_i$ capture group $i \in \Sigma$ of capturing regular expression r

Set of Forests
Over a finite alphabet Σ and an index set I:

- $(\Sigma \cup \{\epsilon\})$ is a forest
- So is $f_1 f_2$ for forests f_1 and f_2
- And $[i f]_i$ for forest f and $i \in I$

Note
If I is non-empty: the strings over Σ properly contained in the set of forests.

If I is empty: they are equal.
Forest and String Languages

Forest Language
\(\mathcal{L}(r) \) for a capturing regular expression \(r \)

\[
\begin{align*}
\mathcal{L}(\emptyset) &= \emptyset \\
\mathcal{L}(\varepsilon) &= \{\varepsilon\} \\
\mathcal{L}(a) &= \{a\} \\
\mathcal{L}(r_0 \cdot r_1) &= \mathcal{L}(r_0) \cdot \mathcal{L}(r_1) \\
\mathcal{L}(r_0 + r_1) &= \mathcal{L}(r_0) \cup \mathcal{L}(r_1) \\
\mathcal{L}(r^*) &= \mathcal{L}(r)^* \\
\mathcal{L}((i r)_i) &= \{[i] \} \cdot \mathcal{L}(r) \cdot \{[i]\}
\end{align*}
\]

Also: By extension, we also handle

\[
\begin{align*}
r? &= (r + \varepsilon), \\
r^+ &= rr^* \\
\text{and } r^{m,n} &= \underbrace{r \cdots r}_{m \text{ times}} (r + \varepsilon) \cdots (r + \varepsilon) \underbrace{\cdots (r + \varepsilon)}_{n \text{ times}}
\end{align*}
\]

\[\pi_{\Sigma'}(w)\] is the maximal subsequence of \(w \) that contains only symbols from \(\Sigma' \).

The **string language** described by the capturing regular expression \(r \) over \(\Sigma \) is the set \(\pi_\Sigma(\mathcal{L}(r)) \).
From forest to captures

Strategy to compute capture information

1. collect the matching forests
2. determine the capture history $C(f)$ and final capture history $C_{\text{fin}}(f)$ for each forest f
3. order forests by Boost partial order \prec_B on C_{fin} values
4. return the greatest C_{fin} value as determined by \prec_B

Capture history

- informally, a function $C(f, i)$ for forest f and group i
- returns a pair (s, ℓ) for each substring captured by group i
- $s \leftarrow$ substring start index, $\ell \leftarrow$ substring length

Final capture history

- $C_{\text{last}}(f, i)$ is the pair (s, ℓ) in $C(f, i)$ with the greatest s
- $C_{\text{fin}}(f)$ is the set $\{(j, C_{\text{last}}(f, j)) \mid j \in I\}$
Boost partial order and captures

Boost partial order
• denote as \prec_B
• assume $\pi_\Sigma(f_1) = \pi_\Sigma(f_2)$

Then $C_{\text{fin}}(f_1) \prec_B C_{\text{fin}}(f_2)$ if for the smallest $j \in I$ such that $(j, s_1, \ell_1) \neq (j, s_2, \ell_2)$, where $(j, s_i, \ell_i) \in C_{\text{fin}}(f_i)$, we have
 1. $s_1 > s_2$, or
 2. $s_1 = s_2$ but $\ell_1 < \ell_2$

Boost captures
• capturing regular expression r
• $w \in \pi_\Sigma(\mathcal{L}(r))$
• the Boost captures of matching w with r: the largest element in

\[\{ C_{\text{fin}}(f) \mid f \in \mathcal{L}(r), \pi_\Sigma(f) = w \} \]

determined by \prec_B
Examples

Match $w = "ab"$ with $a? (1ab)_1 ?b$?

Forests: $f_1 = [0ab]_0$ and $f_2 = [0[1ab]_1]_0$

$C(f_1, 0) = \{(0, 2)\}, \quad C(f_1, 1) = \emptyset, \quad C(f_2, 0) = \{(0, 2)\}, \quad C(f_2, 1) = \{(0, 2)\}$

$C_{fin}(f_1) = \{(0, 0, 2), (1, \top, \bot)\}, \quad C_{fin}(f_2) = \{(0, 0, 2), (1, 0, 2)\}$

At $j = 1$, we find $s_1 = \top$ and $s_2 = 0$, so that $s_1 > s_2$. Therefore, $C_{fin}(f_1) \prec_B C_{fin}(f_2)$.

Match w with $(1a?)_1 (2ab)_{2?} (3b?)_3$

Forests: $f_3 = [0[1a]_1[3b]_3]_0$ and $f_4 = [0[1]_1[2ab]_2[3]_3]_0$

$C_{fin}(f_3) = \{(0, 0, 2), (1, 0, 1), (2, \top, \bot), (3, 1, 1)\}$

$C_{fin}(f_4) = \{(0, 0, 2), (1, 0, 0), (2, 0, 2), (3, 2, 0)\}$

At $j = 1$, we find $s_3 = s_4 = 0$, $\ell_3 = 1$, and $\ell_4 = 0$, so that $\ell_4 < \ell_3$. Therefore, $C_{fin}(f_4) \prec_B C_{fin}(f_3)$.
POSIX matching algorithm in Boost

Inside Boost:
- complete Perl-Compatible Regular Expression (PCRE) engine
- implemented by depth-first backtracking

POSIX matching algorithm:
1. • apply the PCRE-style matching engine to the input
 • record the resulting parse tree t
 • if engine rejects, then reject string
2. • apply PCRE-style matching engine to the input
 • each time it would accept on parse tree t'
 • if $C_{\text{fin}}(t) \prec_B C_{\text{fin}}(t')$, then $t \leftarrow t'$
 • reject, causing engine to backtrack
3. output t as POSIX-style result

Theorem
Boost captures can be computed in time $O(k|w||r|\log|w|)$ when matching input string w with regular expression r, and k is the number of distinct capturing indices.
Experimental results

Two testing frameworks in Python
- small one for existing matchers
- larger, extensible one for exploring different disambiguation policies

Sanity check: Almost 3 000 000 generated test cases —
- over the atoms a, b, . and the operators $|$, $*$, $+$, $?$
- input strings over $\Sigma = \{a, b, c\}$.

Fowler’s test cases
- 93 examples to test POSIX compliance
- 47 ERE; 37 *without partial matching* + 19 of our own
- use a Boost runner as oracle
- our formalism *passed all but 2*
Failed test cases

Match “x” with $(1.?)_1\{2\}$

Two possible ways of matching:

\[
\begin{align*}
 f_1 &= [0[1]_1[1x]_1]_0 \\
 f_2 &= [0[1x]_1[1]_1]_0
\end{align*}
\]

Now, $C_{\text{fin}}(f_2) \prec_B C_{\text{fin}}(f_1)$, because

\[
\{(0, 0, 1), (1, 1, 0)\} \prec_B \{(0, 0, 1), (1, 0, 1)\}.
\]

We prefer f_1, but Boost prefers f_2.

Similarly, matching “xxx” by $(.?.?)\{3\}$ failed.
A bug in Boost

According to the POSIX standard:
Duplication “shall match what repeated consecutive occurrences” would match.

Therefore, $(1 \cdot ?)_1 \{2\} \equiv (1 \cdot ?)_1 (1 \cdot ?)_1$

Possible explanation:
- internally, Boost uses $(1 \cdot ?)_1 (2 \cdot ?)_2$
- then $C_{\text{fin}}([0[1]_1[2]_2]_0) \prec_B C_{\text{fin}}([0[1]_1[2]_2]_0)$
- but it reports $[0[1]_1[1]_1]_0$

Does not extend to matching “xxx” by $(\cdot \cdot ? \cdot ?)\{3\}$.

We think it’s a bug
- Boost has code to short-circuit duplication when it first matches an empty string
- Fine for PCRE, but not POSIX
What we’ve done … and what’s next?

In the paper:

▶ capturing regular expressions + forest languages
▶ lots of examples
▶ formalisation of Boost matching semantics
▶ a start to the formalisation of disambiguation policies

To do:

▶ tackle other kinds of matching semantics
▶ for example, improve informal consideration of Okui–Suzuki disambiguation policies

▶ what is possible?
▶ what would be practically feasible?
▶ what would be useful?

Thanks … any questions?